If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16Y-1-4Y^2
We move all terms to the left:
-(16Y-1-4Y^2)=0
We get rid of parentheses
4Y^2-16Y+1=0
a = 4; b = -16; c = +1;
Δ = b2-4ac
Δ = -162-4·4·1
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{15}}{2*4}=\frac{16-4\sqrt{15}}{8} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{15}}{2*4}=\frac{16+4\sqrt{15}}{8} $
| -7r+20=2r-4(1+3r0 | | 18x^2=15x^2 | | 23=u/2-11 | | 4(2y-33)=28 | | x3−2x2−9x+18=0 | | 8.2x-2.1x=132 | | -9x-8=-6-2x | | 10=6+(0.4t) | | 560+x=1680 | | a/4-5=19 | | -9=9x+6x | | -4(-6x-3)=11 | | 12x-42=18 | | 16=10-4(5-5x) | | 1/3(x)+3/4=1 | | 4.2g+10=22g+22 | | 3(x-2)=-11 | | 5(9-2(6d-1))=11(4-10d)-139 | | -7+9x=-8x+8x | | 6x+8x+31=9x-15 | | 100=36+2(0.4s) | | 9/27p+9/27=-12 | | 3/4e-6=-2/5(e-10)-7 | | 5x-20=2x+10=180 | | -17=3+m | | -5x+6=-19x-13 | | -6x+9=-5x | | (5x+3)+7x=18 | | x2-x=42 | | -4x+7x=-8x-9 | | 0.75(x+20)=2+0.5 | | -1=t+4(-19) |